
REGISTRY-AS-A-SERVICE
ON FLASHBLADE
HOSTING PRIVATE DOCKER REGISTRIES

WHITE PAPER

2

TABLE OF CONTENTS

INTRODUCTION ... 3

GOALS AND OBJECTIVES ... 4

CONTAINER ADOPTION IN THE DEVOPS PROCESS ... 4

DOCKER REGISTRY IN CI/CD PROCESS ON FLASHBLADE ... 5

PRIVATE DOCKER REGISTRY ... 7

Importance of Private Docker Registry ... 7

REGISTRY-AS-A-SERVICE ON FLASHBLADE ... 9

ENVIRONMENT DETAILS .. 10

Linux Nodes ... 10

Network Configuration ... 10

Docker Setup ... 12

SECURE DOCKER REGISTRY V2 SETUP ON FLASHBLADE OVER NFS .. 19

DOCKER SWARM CLUSTER SETUP ... 32

CONCLUSION ... 33

3

The elastic nature of the cloud has made microservices the preferred architecture for distributed development,

with containers as the unit of deployment. While hypervisors like VMware, Hyper-V, and KVM provide server

virtualization, containers provide virtualization at the application layer. Containers bundle the binaries and libraries

that enable the application to run on any platform – including Linux, Windows, and MAC OS.

Cloud-native environments hosted in private datacenters require a standard data management flash platform to

provide more predictable performance for heterogeneous workloads, support for parallel builds during the Continuous

Integration (CI) process, and hosting for source code and build repositories. Horizontal scalability and availability

with high resiliency for applications and their associated datasets are also important requirements.

COMMIT BUILD TEST DEPLOY STAGE PRODUCTION

M
U

LT
IP

LE
 D

EV
EL

O
PE

R
S

{dev}

Production
Application

Storage

Fast Commit Fast Build Fast Log Ingest + Batch/Stream Processing Analytics

DATA HUB

FIGURE 1. Data hub and the Continuous Integration process

The Pure FlashBlade™ product is one of the most advanced scale-out storage solutions ever built. It’s a true data

hub, purpose-built to handle all the various workloads generated during the CI process. A data hub is a data-centric

architecture for storage that powers analytics and artificial intelligence (AI) through agile software development.

It enables enterprises to consolidate data silos and share data in today’s rapidly-evolving, data-first world. As shown

in Figure 1 above, a data hub takes the key strengths of each silo and integrates them into a single, unified platform

that includes four must-have qualities: high throughput for file & object, native scale-out, multi-dimensional

performance, and massively parallel architecture.

INTRODUCTION

The drive toward designing cloud-native applications is enabling and introducing
new and modern processes that follow the 12factor guidelines to developing and
deploying applications in production. This new generation of application development
is all about virtualizing resources and abstracting
underlying infrastructure in order to consume it as code.

https://www.purestorage.com/solutions/infrastructure/containers.html
https://www.purestorage.com/products/flashblade.html
https://www.purestorage.com/why-pure/data-hub.html

Apart from providing unprecedented performance, availability, and scalability, FlashBlade has the ability to self-heal from

any process failure or data store breakdown – without impacting the overall functioning of the application development

and deployment process. Finally, by delivering data reduction for all your CI workloads, FlashBlade is cost-efficient.

GOALS AND OBJECTIVES

In this paper we provide details for configuring and hosting secured private Docker Registries on FlashBlade over

NFS on a single data platform. In doing so, we further demonstrate that FlashBlade can serve as shared infrastructure

to enable data availability, scalability, protection, and performance for all workloads in the application development,

testing, and delivery workstream.

CONTAINER ADOPTION IN THE DEVOPS PROCESS

The recent DevOps Research and Analysis (DORA) report indicates that there is big increase in the use of containers

in development and production environments.

FIGURE 2. State of container adoption

Use of containers during the software development lifecycle (SDLC) provides modularity – enabling agile delivery

pipelines for new features and dramatically faster time-to-market. With the increase in the use of containers depicted in

Figure 2, Docker images are becoming a more common form of consumption versus Open Virtualization Format (OVF)/

Open Virtualization Appliance (OVA) images. Containers can run on Virtual Machines (VMs) and/or physical machines.

4

DO YOU USE CONTAINERS?

https://www.purestorage.com/solutions/infrastructure/containers.html

5

Infrastructure
(Compute, Network, Storage)

Host OS
(Linux, Windows)

Hypervisor
(VMWare, Hyper-V, KVM)

Guest
OS

App A

VM1

Guest
OS

App B

VM2

Guest
OS

App C

VM3

Infrastructure
(Compute, Network, Storage)

Host OS
(Linux, Windows)

Hypervisor
(VMWare, Hyper-V, KVM)

Guest OS

VM1

Guest OS

VM2

App A App B App C App D

Infrastructure
(Compute, Network, Storage)

Platform/ Orchestrators
(OpenShift, Cloud Foundry, DCOS)

App A App B App C App D App E

Host OS
(Linux, Windows)

FIGURE 3. Virtual Machines vs. Containers

Figure 3 indicates that applications running on VMs are stateful and resource-constrained compared to containers.

If a VM or host goes down, the application is lost. Containers like Docker provide application virtualization that’s

lightweight and can be packaged and scaled in any run time environment. Containers are traditionally stateless but

require persistent storage for databases, credentials, keys, configuration, and password data that needs to be shared

and reused by applications, source code, binary repositories, etc.

DOCKER REGISTRY IN CI/CD PROCESS ON FLASHBLADE

Docker Registry is primarily used for hosting, packaging, and distributing docker images among users, teams, and lines

of business. Unlike other source code repositories, Docker is a shared repository. Figure 4 illustrates that images and

packaging in Docker are becoming more popular in the software development lifecycle. But higher volumes of Docker

images and packages require scalable capacity and performance in cost-efficient storage.

FIGURE 4. Higher use of Docker packaging format over others

Docker Registry is an integral part of the Continuous Integration (CI) and Continuous Deployment (CD) process for

developing and deploying cloud-native applications. A build tool like Jenkins can be automated to run parallel builds,

at any given time, and push the resulting images to the Docker Registry upon successful completion of CI tests. These

Docker images are generated and packaged at the end of the build process during the development cycle.

The Docker images are then automatically promoted to Continuous Deployment (CD) and later released to production

using different CD tools like Jenkins and UrbanCode, or Platform-as-a Service (PaaS) tools like RedHat OpenShift,

CloudFoundry, and Datacenter Operating System (DCOS) from Mesosphere.

Figure 5 shows that FlashBlade provides a standard data platform for the various development and deployment

workloads comprising the software development life cycle (SDLC). FlashBlade is a single, cost-efficient platform that

delivers scalable performance and capacity alongside high bandwidth, and is well-suited to handling software builds,

which are compute-intensive workloads with high metadata operations. Configuring builds and Docker Registry over

NFS on FlashBlade allows continuity in the development process with scalability and a reduced data footprint.

Source Code Repository Developers

1

Check-out/Check-in

Push
Push CI Build

Images

3

Continuous Integration (CI)
Build/Test

2
Merge/
Integrate

Pull

NFS S3

Continuous Deployment (CD)

4

Staging/ UAT

5

Release/Operate

6

Build Repository

BIG DATA

DATA SCIENCE

DATA ANALYTICS

FIGURE 5. Docker Registry in the CI/CD process

While Docker containers are ephemeral in nature, Docker images are immutable pieces of binaries that include all

the tools – binaries, configuration files, etc. – they need to run or execute. The Dockerfile is the recipe to build these

Docker images.

Dockerfile helps to bootstrap a filesystem in user space. That means Ubuntu, CentOS, or Debian can run as a container

(user space) on a RedHat Enterprise Linux (RHEL) host. Unlike source code versions, the Docker images have “tags” for

different versions, as shown in Figure 6 below. These Docker images are packaged with the right set of tools, patches,

etc., in layers on top of the base image.

6

https://blog.purestorage.com/why-your-docker-images-should-jump-ship-to-flash/
https://blog.purestorage.com/jumpstarting-private-docker-registry-on-flashblade/

Ubuntu:1.0

Ubuntu:2.0

Ubuntu:3.0

Ubuntu:latest

Debian:1.0

Debian:2.0

Debian:latest

Registry

Repository:1 Repository:2

Layers

Tags

FIGURE 6. Docker Repositories vs. Registry

Docker Registries contain different repositories for each of Docker image; there may, however, be different versions

(tags) of the images in a single repository. Large enterprises that use containers in a CI process may experience up to

250,000 push/pull operations of Docker images in development and deployment in a day – operations that are shared

by different teams and lines of businesses.

PRIVATE DOCKER REGISTRY

The Docker Registry service can be hosted in public as well as in private. One of the most common Registry services

is provided by DockerHub, and it includes some free offerings to individuals and small businesses. When confronted

with a higher number of Docker image repositories, DockerHub and other publicly hosted registries often develop

performance bottlenecks due to less flexibility to integrate with other development tools, security challenges, and

limited capacity scaling.

Private Docker Registry is a private hosting service that can be configured using the open source Docker distribution

that supports Docker Registry v2. (Other configuration choices include Docker Trusted Registry (DTR) from Docker

Datacenter and JFrog Artifactory.) Private Docker Registry can be hosted in secured and unsecured modes internally

within a private datacenter.

Importance of Private Docker Registry
While many public clouds and commercial off-the-shelf (COTS) products are available to distribute Docker images using

Docker Registry, private Docker registries are still relevant and used by organizations. A recent survey indicates that self-

hosting is the most common form of hosting and distributing Docker images as adoption of containers increases.

7

https://www.purestorage.com/solutions/infrastructure/containers.html
https://blog.purestorage.com/why-your-docker-images-should-jump-ship-to-flash/

FIGURE 7. Self-hosting Docker Registry leading over other hosting options1

There are many reasons why organizations choose to use private Docker Registry over publically hosted registry

services. Apart from being open-source software and free to download, Docker Registry is more popular than others

because it offers:

1.	 Security and privacy for proprietary code. Private Docker registries provide granular access and integration

with LDAP and OAuth, etc., in a native production environment for user authorization and authentication,

along with audit logs.

2.	 A disconnected environment where there is no internet, and the environment lives behind a firewall.

By contrast, mirroring a publically hosted registry between remotes sites is slow and resource consuming.

3.	 Freedom from network congestion and performance bottlenecks that can lead to outages with a large

number of push/pull operations for Docker images on public cloud-hosted services.

4.	 Cost-effective capacity scaling, as opposed to public cloud-hosted registry services that charge by the

storage capacity used – and the $/GB/month increases with the size and number of the repositories.

5.	 No limitations on development tools and integrations in the SDLC for a CI/CD workflow, as compared to

the limitations inherent in publically hosted options.

Docker recommends using flash as the form of shared storage for private Docker Registries. The Pure FlashBlade

product is the perfect fit: persistent storage that provides an advanced data hub with scalable performance, storage

efficiency, and reduced cost to store, share, and collaborate among developers. As mentioned in the earlier section,

private Docker Registry can be configured over NFS along with other phases of the CI/CD, like source code repository,

build/test, Blue/Green deployments, A/B testing, and release to production. However, a private Docker Registry can

also be configured over S3 natively on FlashBlade for better scalability and performance. This latter option is not within

the scope of the current document.

1	 Source: https://www.reddit.com/r/docker/comments/5owr9b/poll_where_is_your_docker_registry_hosted/#bottom-comments

8

http://blog.christianposta.com/deploy/blue-green-deployments-a-b-testing-and-canary-releases/
https://www.reddit.com/r/docker/comments/5owr9b/poll_where_is_your_docker_registry_hosted/#bottom-co

REGISTRY-AS-A-SERVICE ON FLASHBLADE

A secured private Docker Registry can be configured in many different ways on FlashBlade over NFS for hosting

and collaboration. Multiple private Docker Registries can be configured on a single data platform like FlashBlade for

scalable performance and capacity. However, this section provides a very simple and detailed step by step process to

install and configure Docker Registry version 2 on FlashBlade.

We illustrate the setup and functioning of the private Docker Registry with a Linux node that has an NFS mount from

FlashBlade, as shown in Figure 8. Docker images are pushed in to the Docker Registry from a build server after

successfully merging and testing the code changes in the CI phase. Multiple images are eventually pulled from the

Registry to be deployed by end-users for staging, and eventually released into production. FlashBlade provides

continuous availability and eliminates performance bottlenecks when users perform Docker push/pull operations at scale.

Private Docker Registry Server

Build workstation Developer workstation

Pu
sh

NFS

Developer workstation

Developer workstation

Pull

FIGURE 8. Docker operation flow to and from the Docker Registry

9

DOCKER SWARM CLUSTER

Public IP:	 10.21.236.115	 Private IP:	 192.16.0.115
	 10.21.236.116		 192.16.0.116
	 10.21.236.117		 192.16.0.117

registry.pure.lab.com

Public IP:	 10.21.236.114
Private IP:	 192.16.0.114

Public IP:	 10.21.236.118
Private IP:	 192.16.0.118

https://blog.purestorage.com/jumpstarting-private-docker-registry-on-flashblade/

ENVIRONMENT DETAILS

The secured private Registry set up for purposes of this documentation had the following configuration:

Linux Nodes
Clusters can be configured using Kubernetes, Openshift, and Docker Swarm orchestrator tools. Docker registry

in OpenShift can also be configured to run on FlashBlade. For the purposes of this paper, Docker Swarm was

used to create a cluster. All the Linux nodes are part of the Docker swarm cluster and build server, and all the user

workstations that perform the Docker push/pull operations are configured with the following version of CentOS Linux.

It is recommended to use CentOS/RHEL version 6.5 and later for this configuration. It is also recommended to have at

least 50GB of local HDD, 8GB RAM, and two core processors on each of the Linux nodes.

[root@sn1-r720-g09-17 ~]# uname -m && cat /etc/redhat-release

x86_64

CentOS Linux release 7.5.1804 (Core)

Network Configuration
The network configuration is the critical part of this setup. For a very basic secured private Registry setup, the

following network, docker daemon, and name resolution have to be configured.

•	 Public IP network for Docker Swarm and applications that run in docker containers for external

communication – for example, 10.21.236.115 – 10.21.236.117

•	 Private IP network in a separate VLAN from the public network for the secure Docker Registry to

communicate – 192.16.0.115 – 192.16.0.117. This is not routable to the public network. All the nodes that

access this private Registry will have a similar network configuration. If a node without these network

settings tries to perform “Docker push/pull”, we will end up with the following error:

[root@sn1-r720-g09-23 ~]# docker push registry.pure.lab.com:5000/node

The push refers to repository [registry.pure.lab.com:5000/node]

Get https://registry.pure.lab.com:5000/v2/: dial tcp 185.53.178.9:5000: connect: connection refused

Connection refused means there is no communication happening from the node on which the Docker push/

pull operation is happening to the Registry nodes. If the private IP (192.16.0.x) is not pingable between the

nodes, no route to host, another common network error, will occur while trying to push/pull Docker images

from hosts with incorrect network settings.

•	 In this sample setup, the Registry name is registry.pure.lab.com and an A-record is created in the pure.lab.

com domain with the IP address 192.16.0.115. Configuring DNS is beyond the scope of this document.

10

FIGURE 9. Registry record included in the pure.lab.com domain

Include the IP address of the nameserver pure.lab.com domain in the /etc/resolv.conf file in each of the

Linux hosts.

[root@sn1-r720-g09-17 ~]# cat /etc/resolv.conf

Generated by NetworkManager

search puretec.purestorage.com

search pure.lab.com

nameserver 10.21.93.16

nameserver 192.16.0.10

If there is no DNS in the environment, the local /etc/hosts file can be used for name resolution. This Fully

Qualified Domain Name (FQDN) has to be added to the local hosts file (/etc/hosts) on all the Linux hosts on

that part of the Docker swarm cluster and the nodes that will perform the Docker push/pull operations.

[root@sn1-r720-g09-17 ~]# cat /etc/hosts

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

192.16.0.115	 registry.pure.lab.com	 registry

Confirm that the registry.pure.lab.com can be pinged with the correct name resolution from any host that is

configured to use the private Docker Registry.

[root@sn1-r720-g09-15 ~]# ping registry.pure.lab.com

PING registry.pure.lab.com (192.16.0.115) 56(84) bytes of data.

64 bytes from registry.pure.lab.com (192.16.0.115): icmp_seq=1 ttl=64 time=0.211 ms

11

Docker Setup
The following steps list how docker-ce (community edition) can be installed and configured on each of the swarm nodes

and the rest of the Linux nodes that would perform the Docker push/pull operation to the private Docker Registry.

•	 Disable SELinux on all the Linux nodes.

[root@sn1-r720-g09-17 ~]# setenforce 0

setenforce: SELinux is disabled

[root@sn1-r720-g09-17 ~]# sed -i --follow-symlinks 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/

sysconfig/selinux

•	 Enable the bridge for the Docker – br_netfilter kernel module

[root@sn1-r720-g09-17 ~]# modprobe br_netfilter

[root@sn1-r720-g09-17 ~]# echo '1' > /proc/sys/net/bridge/bridge-nf-call-iptables

•	 Disable swap on all the Linux nodes on which Docker is configured.

[root@sn1-r720-g09-17 ~]# swapoff -a

•	 Comment out the swap entry in /etc/fstab to make the change persistent across reboots.

[root@sn1-r720-g09-17 ~]# cat /etc/fstab |grep swap

#/dev/mapper/vg0-lv_swap swap swap defaults 0 0

•	 Install the package dependencies for docker-ce

[root@sn1-r720-g09-17 ~]# yum install -y yum-utils device-mapper-persistent-data lvm2

•	 Add the docker repository on the Linux nodes and install docker-ce on each of them.

[root@sn1-r720-g09-17 ~]# yum-config-manager --add-repo https://download.docker.com/linux/centos/

docker-ce.repo

[root@sn1-r720-g09-17 ~]# yum install -y docker-ce

–– Reboot the Linux nodes.

–– After the reboot, enable and start Docker on the Linux nodes.

[root@sn1-r720-g09-17 ~]# systemctl start docker && systemctl enable docker

–– Check the Docker version after the install on the Linux nodes.

[root@sn1-r720-g09-17 ~]# docker --versio n

Docker version 18.06.1-ce, build e68fc7a

Note: Docker 18.06.1-c2 was used for this validation.

12

•	 A private IP network: 172.17.0.5 is configured to the default bridge network that is used by the Docker engine.

A /etc/docker/daemon.json file has to be manually created after Docker is installed in the all the Linux nodes

including Swarm cluster that performs the Docker pull/push operations to the private Docker Registry.

The private Docker Registry also used port 5000. As registry.pure.lab.com is used as a secured Registry,

the localhosts on port 5000 should be called unsecured, and those entries must be included in the /etc/

docker/daemon.json file.

[root@sn1-r720-g09-17 ~]# cat /etc/docker/daemon.json

{

 	 "bip": "172.17.0.5/16",

 	 "insecure-registries" : ["localhost:5000",

 "127.0.0.1:5000"

],

 	 "storage-driver": "overlay2",

 "storage-opts": [

 "overlay2.override_kernel_check=true"

]

}

•	 After the /etc/docker/daemon.json file is created and configured, Docker has to be restarted.

[root@sn1-r720-g09-17 ~]# systemctl restart docker

•	 A docker info command should yield something similar to the output listed below.

[root@sn1-r720-g09-17 ~]# docker info

Containers: 2

 Running: 2

 Paused: 0

 Stopped: 0

Images: 1

Server Version: 18.06.1-ce

Storage Driver: overlay2

 Backing Filesystem: extfs

 Supports d_type: true

 Native Overlay Diff: true

Logging Driver: json-file

Cgroup Driver: cgroupfs

Plugins:

 Volume: local

13

 Network: bridge host macvlan null overlay

 Log: awslogs fluentd gcplogs gelf journald json-file logentries splunk syslog

Swarm: active

 NodeID: 4z5leyoscu1cdvh8rf24wuxnu

 Is Manager: true

 ClusterID: wu19o3qoechognglazrk4rlbh

 Managers: 1

 Nodes: 3

 Orchestration:

 Task History Retention Limit: 1

 Raft:

 Snapshot Interval: 10000

 Number of Old Snapshots to Retain: 0

 Heartbeat Tick: 1

 Election Tick: 10

 Dispatcher:

 Heartbeat Period: 5 seconds

 CA Configuration:

 Expiry Duration: 3 months

 Force Rotate: 0

 Autolock Managers: false

 Root Rotation In Progress: false

 Node Address: 10.21.236.115

 Manager Addresses:

 10.21.236.115:2377

Runtimes: runc

Default Runtime: runc

Init Binary: docker-init

containerd version: 468a545b9edcd5932818eb9de8e72413e616e86e

runc version: 69663f0bd4b60df09991c08812a60108003fa340

init version: fec3683

Security Options:

 seccomp

 Profile: default

Kernel Version: 3.10.0-862.11.6.el7.x86_64

Operating System: CentOS Linux 7 (Core)

OSType: linux

Architecture: x86_64

14

CPUs: 48

Total Memory: 503.7GiB

Name: sn1-r720-g09-17.puretec.purestorage.com

ID: 2LKE:UNAS:AHPU:74TB:Y65T:DDKO:NJOJ:KXY6:57AT:DACO:O7JE:7FMZ

Docker Root Dir: /var/lib/docker

Debug Mode (client): false

Debug Mode (server): false

Registry: https://index.docker.io/v1/

Labels:

Experimental: false

Insecure Registries:

 localhost:5000

 127.0.0.1:5000

 127.0.0.0/8

Live Restore Enabled: false

•	 The network should look something like the following:

root@sn1-r720-g09-17 ~]# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: eno3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000

 link/ether ec:f4:bb:d1:f7:7c brd ff:ff:ff:ff:ff:ff

3: eno4: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000

 link/ether ec:f4:bb:d1:f7:7d brd ff:ff:ff:ff:ff:ff

4: eno1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000

 link/ether ec:f4:bb:d1:f7:78 brd ff:ff:ff:ff:ff:ff

5: eno2: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000

 link/ether ec:f4:bb:d1:f7:7a brd ff:ff:ff:ff:ff:ff

6: enp66s0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 9000 qdisc mq master bond0 state UP group

default qlen 1000

 link/ether f4:52:14:97:1c:41 brd ff:ff:ff:ff:ff:ff

7: enp66s0d1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000

 link/ether f4:52:14:97:1c:42 brd ff:ff:ff:ff:ff:ff

8: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 9000 qdisc noqueue state UP group default qlen

1000

15

 link/ether f4:52:14:97:1c:41 brd ff:ff:ff:ff:ff:ff

 inet6 fe80::f652:14ff:fe97:1c41/64 scope link

 valid_lft forever preferred_lft forever

9: bond0.2236@bond0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc noqueue state UP group default

qlen 1000

 link/ether f4:52:14:97:1c:41 brd ff:ff:ff:ff:ff:ff

 inet 10.21.236.115/24 brd 10.21.236.255 scope global noprefixroute bond0.2236

 valid_lft forever preferred_lft forever

 inet6 fe80::f652:14ff:fe97:1c41/64 scope link

 valid_lft forever preferred_lft forever

10: bond0.1116@bond0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc noqueue state UP group default

qlen 1000

 link/ether f4:52:14:97:1c:41 brd ff:ff:ff:ff:ff:ff

 inet 192.16.0.115/24 brd 192.16.0.255 scope global noprefixroute bond0.1116

 valid_lft forever preferred_lft forever

 inet6 fe80::f652:14ff:fe97:1c41/64 scope link

 valid_lft forever preferred_lft forever

11: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default

 link/ether 02:42:d4:b1:7a:b5 brd ff:ff:ff:ff:ff:ff

 inet 172.17.0.5/16 brd 172.17.255.255 scope global docker0

 valid_lft forever preferred_lft forever

•	 Install and enable/start the httpd on all the Linux nodes.

[root@sn1-r720-g09-11 ~]# yum install -y httpd

[root@sn1-r720-g09-11 ~]# systemctl enable httpd && systemctl start httpd

[root@sn1-r720-g09-11 ~]# systemctl status httpd

● httpd.service - The Apache HTTP Server

 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; vendor preset: disabled)

 Active: active (running) since Mon 2018-09-10 22:05:32 PDT; 1 weeks 5 days ago

 Docs: man:httpd(8)

 man:apachectl(8)

 Process: 27703 ExecReload=/usr/sbin/httpd $OPTIONS -k graceful (code=exited, status=0/SUCCESS)

 Main PID: 1779 (httpd)

 Status: "Total requests: 0; Current requests/sec: 0; Current traffic: 0 B/sec"

 Tasks: 7

 Memory: 8.3M

 CGroup: /system.slice/httpd.service

16

 ├─ 1779 /usr/sbin/httpd -DFOREGROUND

 ├─27719 /usr/sbin/httpd -DFOREGROUND

 ├─27720 /usr/sbin/httpd -DFOREGROUND

 ├─27721 /usr/sbin/httpd -DFOREGROUND

 ├─27722 /usr/sbin/httpd -DFOREGROUND

 ├─27723 /usr/sbin/httpd -DFOREGROUND

 └─27724 /usr/sbin/httpd -DFOREGROUND

Sep 10 22:05:32 sn1-r720-g09-11.puretec.purestorage.com systemd[1]: Starting The Apache HTTP Server...

Sep 10 22:05:32 sn1-r720-g09-11.puretec.purestorage.com systemd[1]: Started The Apache HTTP Server.

Sep 14 03:10:01 sn1-r720-g09-11.puretec.purestorage.com systemd[1]: Reloaded The Apache HTTP Server.

Sep 16 03:19:02 sn1-r720-g09-11.puretec.purestorage.com systemd[1]: Reloaded The Apache HTTP Server.

Sep 23 03:47:02 sn1-r720-g09-11.puretec.purestorage.com systemd[1]: Reloaded The Apache HTTP Server.

[root@sn1-r720-g09-11 ~]#

•	 Configure a self-signed certificate to secure private Docker Registry for the registry.pure.lab.com node after

creating a new /certs directory.

[root@sn1-r720-g09-17 ~]# mkdir -p /certs

[root@sn1-r720-g09-17 ~]# openssl req -newkey rsa:4096 -nodes -sha256 -keyout /certs/ca.key -x509

-days 365 -out /certs/ca.crt

Generating a 4096 bit RSA private key

...

..++

.................++

writing new private key to '/certs/ca.key'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:US

State or Province Name (full name) []:CA

Locality Name (eg, city) [Default City]:MV

Organization Name (eg, company) [Default Company Ltd]:Pure Storage

17

Organizational Unit Name (eg, section) []:FlashBlade

Common Name (eg, your name or your server's hostname) []:registry.pure.lab.com

Email Address []:bikash@purestorage.com

[root@sn1-r720-g09-17 ~]#

[root@sn1-r720-g09-17 ~]# ls -al /certs/

total 16

drwxr-xr-x 2 root root 4096 Sep 15 16:21 .

dr-xr-xr-x. 19 root root 4096 Sep 15 23:47 ..

-rw-r--r-- 1 root root 2155 Sep 15 16:21 ca.crt

-rw-r--r-- 1 root root 3272 Sep 15 16:21 ca.key

•	 Restart Docker.

[root@sn1-r720-g09-17 ~]# systemctl restart docker

[root@sn1-r720-g09-17 ~]# systemctl status docker

• docker.service - Docker Application Container Engine

 Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled; vendor preset: disabled)

 Active: active (running) since Mon 2018-09-10 22:05:28 PDT; 1 weeks 3 days ago

 Docs: https://docs.docker.com

 Main PID: 1833 (dockerd)

 Tasks: 154

 Memory: 2.5G

 CGroup: /system.slice/docker.service

 ├─1833 /usr/bin/dockerd

 └─2058 docker-containerd --config /var/run/docker/containerd/containerd.toml

Sep 10 22:05:28 sn1-r720-g09-17.puretec.purestorage.com dockerd[1833]: time="2018-09-

10T22:05:28.639964096-07:00" level=info msg="Loading containers: done."

Sep 10 22:05:28 sn1-r720-g09-17.puretec.purestorage.com dockerd[1833]: time="2018-09-

10T22:05:28.684068144-07:00" level=info msg="Docker daemon" commit=e68fc7a graphdriver(s)=overlay2

version=18.06.1-ce

Sep 10 22:05:28 sn1-r720-g09-17.puretec.purestorage.com dockerd[1833]: time="2018-09-

10T22:05:28.684826304-07:00" level=info msg="Daemon has completed initialization"

Sep 10 22:05:28 sn1-r720-g09-17.puretec.purestorage.com dockerd[1833]: time="2018-09-

10T22:05:28.714378495-07:00" level=info msg="API listen on /var/run/docker.sock"

Sep 10 22:05:28 sn1-r720-g09-17.puretec.purestorage.com systemd[1]: Started Docker Application

Container Engine.

18

19

SECURE DOCKER REGISTRY V2 SETUP ON FLASHBLADE OVER NFS

Setup and configure Docker Registry version v2. docker-registry is now deprecated and docker-distribution has

replaced docker-registry.

[root@sn1-r720-g09-21 ~]# yum install -y docker-distribution

•	 After docker-distribution is installed, a new config.yml file will be created under /etc/docker-distribution/

registry. The config.yml file has the environment information of the private Docker Registry. For the secure

private Docker Registry, we are using a file share from FlashBlade over NFS.

[root@sn1-r720-g09-17 ~]# cat /etc/docker-distribution/registry/config.yml

version: 0.1

log:

 fields:

 service: registry

storage:

 cache:

 blobdescriptor: inmemory

 filesystem:

 rootdirectory: /var/lib/registry

http:

 addr: :5000

 tls:

 certificate: /certs/ca.crt

 key: /certs/ca.key

 headers:

 X-Content-Type-Options: [nosniff]

•	 Before the docker-distribution service is started, the default registry path /var/lib/registry on the Linux host has

to mount the NFS share from the FlashBlade. The following NFS share docker is created on the FlashBlade.

FIGURE 10. NFS share docker created on FlashBlade

https://blog.purestorage.com/jumpstarting-private-docker-registry-on-flashblade/

20

•	 On the registry.pure.lab.com Linux node, the /var/lib/registry is mounted to the NFS share docker created on

FlashBlade. All three nodes in the swarm cluster mount to the same NFS share docker from their respective

nodes for load-balancing.

[root@sn1-r720-g09-17 ~]# cat /etc/fstab

10.21.236.202:/docker /var/lib/registry nfs hard,rw,bg,vers=3,tcp,nolock,timeo=600

10.21.236.202:/docker /var/lib/registry nfs hard,rw,bg,vers=3,tcp,nolock,timeo=600

10.21.236.202:/docker /var/lib/registry nfs hard,rw,bg,vers=3,tcp,nolock,timeo=600

[root@sn1-r720-g09-17 ~]# ls -al /var/lib/registry/

total 4

drwxr-xr-x 1 root root 0 Sep 10 10:41 .

drwxr-xr-x. 39 root root 4096 Sep 15 15:10 ..

drwxr-xr-x 1 root root 0 Sep 16 08:16 docker

drwxr-xr-x 1 root root 0 Sep 10 10:41 .fast-remove

drwxr-xr-x 1 root root 0 Sep 10 10:41 .snapshot

•	 Enable and start docker-distribution on the registry.pure.lab.com node.

[root@sn1-r720-g09-17 ~]# systemctl enable docker-distribution.service

[root@sn1-r720-g09-17 ~]# systemctl start docker-distribution.service

[root@sn1-r720-g09-17 ~]# systemctl status docker-distribution.service

● docker-distribution.service - v2 Registry server for Docker

 Loaded: loaded (/usr/lib/systemd/system/docker-distribution.service; enabled; vendor preset:

disabled)

 Active: active (running) since Fri 2018-09-21 10:45:38 PDT; 2s ago

 Main PID: 10210 (registry)

 Tasks: 12

 Memory: 7.0M

 CGroup: /system.slice/docker-distribution.service

 └─10210 /usr/bin/registry serve /etc/docker-distribution/registry/config.yml

Sep 21 10:45:38 sn1-r720-g09-17.puretec.purestorage.com systemd[1]: Started v2 Registry server for

Docker.

21

Sep 21 10:45:38 sn1-r720-g09-17.puretec.purestorage.com systemd[1]: Starting v2 Registry server for

Docker...

Sep 21 10:45:38 sn1-r720-g09-17.puretec.purestorage.com registry[10210]: time="2018-09-

21T10:45:38-07:00" level=warning msg="No HTTP secret provided - generated random secret. This may

cause problems with uploads if multiple registries are behind a load-bala...

Sep 21 10:45:38 sn1-r720-g09-17.puretec.purestorage.com registry[10210]: time="2018-09-

21T10:45:38-07:00" level=info msg="redis not configured" go.version=go1.9.4 instance.id=be517d44-2938-

4214-92cd-d6dac5cf4725 version="v2.6.2+unknown"

Sep 21 10:45:38 sn1-r720-g09-17.puretec.purestorage.com registry[10210]: time="2018-09-

21T10:45:38-07:00" level=info msg="Starting upload purge in 45m0s" go.version=go1.9.4 instance.

id=be517d44-2938-4214-92cd-d6dac5cf4725 version="v2.6.2+unknown"

Sep 21 10:45:38 sn1-r720-g09-17.puretec.purestorage.com registry[10210]: time="2018-09-

21T10:45:38-07:00" level=info msg="using inmemory blob descriptor cache" go.version=go1.9.4 instance.

id=be517d44-2938-4214-92cd-d6dac5cf4725 version="v2.6.2+unknown"

Sep 21 10:45:38 sn1-r720-g09-17.puretec.purestorage.com registry[10210]: time="2018-09-

21T10:45:38-07:00" level=info msg="listening on [::]:5000, tls" go.version=go1.9.4 instance.id=be517d44-

2938-4214-92cd-d6dac5cf4725 version="v2.6.2+unknown"

Hint: Some lines were ellipsized, use -l to show in full.

•	 Configure secure private Docker Registry as a service in the Docker swarm cluster.

[root@sn1-r720-g09-17 ~]# docker pull registry:2

2: Pulling from library/registry

Digest: sha256:5a156ff125e5a12ac7fdec2b90b7e2ae5120fa249cf62248337b6d04abc574c8

Status: Downloaded newer image for registry:2

[root@sn1-r720-g09-17 ~]# docker service create --name registry -p 5000 -e DOCKER_REGISTRY_CONFIG=/

etc/docker-distribution/registry/config.yml registry:2

2ffjngr0w29awk25dskpzhfs8

overall progress: 1 out of 1 tasks

1/1: running [==>]

verify: Service converged

[root@sn1-r720-g09-17 ~]# docker service ls

ID NAME MODE REPLICAS IMAGE PORTS

2ffjngr0w29a registry replicated 1/1 registry:2 *:30000->5000/tcp

22

•	 Scale the registry service to three replicas that can load-balance on three swarm cluster nodes.

root@sn1-r720-g09-17 ~]# docker service scale registry=3

registry scaled to 3

overall progress: 3 out of 3 tasks

1/3: running [==>]

2/3: running [==>]

3/3: running [==>]

verify: Service converged

[root@sn1-r720-g09-17 ~]# docker service ps registry

ID NAME IMAGE NODE

DESIRED STATE CURRENT STATE ERROR PORTS

0hdg9dnocd3q registry.1 registry:2 sn1-r720-g09-19.puretec.purestorage.com

Running Running 10 minutes ago

mnmpctowakqf registry.2 registry:2 sn1-r720-g09-17.puretec.purestorage.com

Running Running 53 seconds ago

vwi8low0ynku registry.3 registry:2 sn1-r720-g09-21.puretec.purestorage.com

Running Running 54 seconds ago

•	 After the Docker, Docker swarm cluster, and Docker Registry configuration, the network has now created

Docker_gwbridge and veth0 interfaces for the Registry containers.

[root@sn1-r720-g09-17 ~]# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: eno3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000

 link/ether ec:f4:bb:d1:f7:7c brd ff:ff:ff:ff:ff:ff

3: eno4: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000

 link/ether ec:f4:bb:d1:f7:7d brd ff:ff:ff:ff:ff:ff

4: eno1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000

 link/ether ec:f4:bb:d1:f7:78 brd ff:ff:ff:ff:ff:ff

5: eno2: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000

 link/ether ec:f4:bb:d1:f7:7a brd ff:ff:ff:ff:ff:ff

23

6: enp66s0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 9000 qdisc mq master bond0 state UP group

default qlen 1000

 link/ether f4:52:14:97:1c:41 brd ff:ff:ff:ff:ff:ff

7: enp66s0d1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000

 link/ether f4:52:14:97:1c:42 brd ff:ff:ff:ff:ff:ff

 inet6 fe80::2f23:a2f9:cd62:4b3a/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

8: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 9000 qdisc noqueue state UP group default qlen

1000

 link/ether f4:52:14:97:1c:41 brd ff:ff:ff:ff:ff:ff

 inet6 fe80::f652:14ff:fe97:1c41/64 scope link

 valid_lft forever preferred_lft forever

9: bond0.2236@bond0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc noqueue state UP group default

qlen 1000

 link/ether f4:52:14:97:1c:41 brd ff:ff:ff:ff:ff:ff

 inet 10.21.236.115/24 brd 10.21.236.255 scope global noprefixroute bond0.2236

 valid_lft forever preferred_lft forever

 inet6 fe80::f652:14ff:fe97:1c41/64 scope link

 valid_lft forever preferred_lft forever

10: bond0.1116@bond0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc noqueue state UP group default

qlen 1000

 link/ether f4:52:14:97:1c:41 brd ff:ff:ff:ff:ff:ff

 inet 192.16.0.115/24 brd 192.16.0.255 scope global noprefixroute bond0.1116

 valid_lft forever preferred_lft forever

 inet6 fe80::f652:14ff:fe97:1c41/64 scope link

 valid_lft forever preferred_lft forever

11: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default

 link/ether 02:42:dd:f0:7a:22 brd ff:ff:ff:ff:ff:ff

 inet 172.17.0.5/16 brd 172.17.255.255 scope global docker0

 valid_lft forever preferred_lft forever

12: docker_gwbridge: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default

 link/ether 02:42:8b:76:da:80 brd ff:ff:ff:ff:ff:ff

 inet 172.18.0.1/16 brd 172.18.255.255 scope global docker_gwbridge

 valid_lft forever preferred_lft forever

 inet6 fe80::42:8bff:fe76:da80/64 scope link

 valid_lft forever preferred_lft forever

18: veth42e215e@if17: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker_gwbridge

state UP group default

24

 link/ether 32:d3:2c:d3:b2:75 brd ff:ff:ff:ff:ff:ff link-netnsid 1

 inet6 fe80::30d3:2cff:fed3:b275/64 scope link

 valid_lft forever preferred_lft forever

22: veth3d4600b@if21: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker_gwbridge

state UP group default

 link/ether 96:69:d6:6b:4f:0e brd ff:ff:ff:ff:ff:ff link-netnsid 2

 inet6 fe80::9469:d6ff:fe6b:4f0e/64 scope link

 valid_lft forever preferred_lft forever

26: vetha0ec353@if25: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker_gwbridge

state UP group default

 link/ether 92:ad:48:04:ed:3e brd ff:ff:ff:ff:ff:ff link-netnsid 3

 inet6 fe80::90ad:48ff:fe04:ed3e/64 scope link

 valid_lft forever preferred_lft forever

•	 The above virtual interfaces and bridge gateway listing checks out that the Registry configuration is good.

Now the secure private Docker Registry server configuration is complete.

Configure the build node for docker push.

•	 As mentioned in the previous section, Docker is installed on the build node where the Docker push operation

is performed, in order to push the different Docker images to the Registry server registry.pure.lab.com.

–– Create a new directory with the Registry server name and port 5000.

[root@sn1-r720-g09-15 ~]# mkdir -p /etc/docker/certs.d/registry.pure.lab.com:5000

–– Copy the ca.crt from the private Docker Registry server – registry.pure.lab.com.

[root@sn1-r720-g09-15 ~]# scp -rp root@10.21.236.107:/certs/ca.crt /etc/docker/certs.d/registry.

pure.lab.com\:5000/.

–– Make sure the /etc/docker/daemon.json file has the same entries as mentioned in the previous section.

–– Restart Docker service

[root@sn1-r720-g09-15 ~]# systemctl restart docker

•	 New images can be generated on the build server as part of the CI process and then pushed to the private

Docker Registry automatically as part of the build pipeline. For the purpose of this paper, a few Docker

images were pulled from the dockerhub library to demonstrate the docker push operation.

[root@sn1-r720-g09-15 ~]# docker pull debian

Using default tag: latest

latest: Pulling from library/debian

25

05d1a5232b46: Pull complete

Digest: sha256:07fe888a6090482fc6e930c1282d1edf67998a39a09a0b339242fbfa2b602fff

Status: Downloaded newer image for debian:latest

[root@sn1-r720-g09-15 ~]# docker pull centos

Using default tag: latest

latest: Pulling from library/centos

256b176beaff: Pull complete

Digest: sha256:6f6d986d425aeabdc3a02cb61c02abb2e78e57357e92417d6d58332856024faf

Status: Downloaded newer image for centos:latest

•	 Tag the images with the Registry server name – registry.pure.lab.com – and port 5000.

[root@sn1-r720-g09-15 ~]# docker tag centos registry.pure.lab.com:5000/centos

[root@sn1-r720-g09-15 ~]# docker tag debian registry.pure.lab.com:5000/Debian

•	 List the tags of the Docker images.

[root@sn1-r720-g09-15 ~]# docker images|grep debian

debian latest f2aae6ff5d89 2 weeks

ago 101MB

registry.pure.lab.com:5000/debian latest f2aae6ff5d89 2 weeks

ago 101MB

[root@sn1-r720-g09-15 ~]# docker images|grep centos

centos latest 5182e96772bf 6 weeks

ago 200MB

registry.pure.lab.com:5000/centos latest 5182e96772bf 6 weeks

ago 200MB

[root@sn1-r720-g09-15 ~]#

•	 Push the newly tagged images to the secure private Registry – registry.pure.lab.com.

[root@sn1-r720-g09-15 ~]# docker push registry.pure.lab.com:5000/debian

The push refers to repository [registry.pure.lab.com:5000/debian]

b28ef0b6fef8: Pushed

latest: digest: sha256:00c5748eb465a0139063c544de181177da504dfa4e545ac3c0ecd13b7363e70f size: 529

[root@sn1-r720-g09-15 ~]# docker push registry.pure.lab.com:5000/centos

The push refers to repository [registry.pure.lab.com:5000/centos]

1d31b5806ba4: Pushed

26

latest: digest: sha256:fc2476ccae2a5186313f2d1dadb4a969d6d2d4c6b23fa98b6c7b0a1faad67685 size: 529

•	 Check the Registry server to confirm the images are now available.

[root@sn1-r720-g09-15 ~]# curl --cacert /etc/docker/certs.d/registry.pure.lab.com:5000/ca.crt https://

registry.pure.lab.com:5000/v2/_catalog

{"repositories":["centos","debian","node","wordpress"]}

[root@sn1-r720-g09-15 ~]#

•	 The Registry server – registry.pure.lab.com – that mounts the NFS share docker from FlashBlade lists

all the repositories.

[root@sn1-r720-g09-17 registry]# pwd

/var/lib/registry

[root@sn1-r720-g09-17 registry]#

[root@sn1-r720-g09-17 registry]# ls -al

total 4

drwxr-xr-x 1 root root 0 Sep 10 10:41 .

drwxr-xr-x. 39 root root 4096 Sep 15 15:10 ..

drwxr-xr-x 1 root root 0 Sep 16 08:16 docker

drwxr-xr-x 1 root root 0 Sep 10 10:41 .fast-remove

drwxr-xr-x 1 root root 0 Sep 10 10:41 .snapshot

[root@sn1-r720-g09-17 registry]#

[root@sn1-r720-g09-17 registry]# tree -d

.

└── docker

 └── registry

 └── v2

 ├── blobs

 │ └── sha256

 │ ├── 00

 │ │ └── 00c5748eb465a0139063c544de181177da504dfa4e545ac3c0ecd13b7363e70f

 │ ├── 05

 │ │ └── 05d1a5232b461a4b35424129580054caa878cd56f100e34282510bd4b4082e4d

 │ ├── 15

 │ │ └── 15bc7736db11de5eddd0f13bb1c28ebe5612a4fcf398c7c1077f446abbdfb935

 │ ├── 23

 │ │ └── 23d9db872f7e06bc37f2a2c704c042fdd90c872a130ce7ef2272f0f9d03afdbc

 │ ├── 25

27

 │ │ └── 256b176beaff7815db2a93ee2071621ae88f451bb1e198ca73010ed5bba79b65

 │ ├── 41

 │ │ └── 41e689eea0cdaab1280ed184f117171f0897a9353b3bd4cc321f0839d4027511

 │ ├── 46

 │ │ └── 46dde23c37b3419122bb597461c1a48bdea1842aaae7dbe728dfa20a9aabe11b

 │ ├── 48

 │ │ └── 480d183b9ecf7a67b386cc7d1cf2919effbaa591dab9e8c7384bbf323a183686

 │ ├── 4c

 │ │ └── 4cb905a2737c60594ee948e4d6e7ae5375b571990c02fef97b1b5825d2275633

 │ ├── 51

 │ │ └── 5182e96772bf11f4b912658e265dfe0db8bd314475443b6434ea708784192892

 │ ├── 54

 │ │ └── 543b133149a6507f2c2362aa42deda94d023bba156e6b8238c6cb3b71ec15dd3

 │ ├── 65

 │ │ └── 65632e89c5f4ef102bcd13b6e86baf954e0b902f688a46961d5ff0a36dddfebe

 │ ├── 69

 │ │ └── 69a25f7e493029f541fc3c7ac66fdffdd5f8c4b9b33346031523d053177bb365

 │ ├── 6e

 │ │ └── 6ebaeb0745895220f609d4aa703e4563c39de239a2d00b85bece23a3ca3ac735

 │ ├── 70

 │ │ └── 708410509e8f13fd6433384965b4a40f9f7a2863e516d3257e06ec0912247cb8

 │ ├── 81

 │ │ ├── 8178629708ff26a93a1f3b0cc54217949a6f9f8d30f72f9665d4043f4757b24f

 │ │ └── 81bc8dc9a8659a169f8187092eb2037bef64645ea74103b9a7d573ef4fc07496

 │ ├── 8a

 │ │ └── 8ac9c275c1a51f9f692adaeba47bb7f8471113cfb984723b21b83e4d0e48ee71

 │ ├── 90

 │ │ └── 904e670dd387d970b3d51bc93c54ecaf3e2f1614f1dcc30085dbd001ff6128d5

 │ ├── a0

 │ │ └── a06f9e60b0808ffb7b1aa9dd498f894fe6d6663ad37ba09726638677c7970389

 │ ├── a3

 │ │ └── a3ed406e3c880fbafac0ae7ab1a889a46f9ef17e86e3efd898158a3241a0518b

 │ ├── ae

 │ │ └── ae70e16ef0357e55da00ce408666de68104a907cfdec4fac79eb281ee23ed4b5

 │ ├── b2

 │ │ └── b2c40cef4807e3464b2859ebb5e4ac179cfbc253a212ce725f3a5d27388f79fe

 │ ├── b9

 │ │ └── b9501b07bdf16f01651117cbfbe7deeed95c4c58331b4b164c8876e30328ec59

28

 │ ├── be

 │ │ └── be8881be8156e4068e611fe956aba2b9593ebd953be14fb7feea6d0659aa3abe

 │ ├── c0

 │ │ └── c0cfd94445383406b8a0935e92616ab11a87307e702d4dfaabf2b25542f49a40

 │ ├── c4

 │ │ ├── c41139f0d4f55571bdfd90615889964aa74ed2878bd8811c906033642e3b9770

 │ │ └── c44709db38b42671c256080936a6e578adeb806a580750f56e9ccb2388292176

 │ ├── cd

 │ │ └── cd75fa32da8fd946b82c0447feac1f3c24330594492e3be74a516b18437d5306

 │ ├── d6

 │ │ └── d660b1f15b9bfb8142f50b518156f2d364d9642fe05854538b060498e2f7928d

 │ ├── e6

 │ │ └── e6006cdfa16b487a3a92269f59ecf33b936311fb9934fd4a5b7775b46933fdfe

 │ ├── e7

 │ │ └── e7428f935583e84197ae834885e62b69922f1ce7e8672a3746295555b3853fc7

 │ ├── ed

 │ │ └── edde81479afc60a26d95e7f657cceac56aa8a169fd4691b98da919f00e097d3d

 │ ├── f1

 │ │ └── f180ba12d718e7cecbebe48d0a552bb27932480b35bb0130acf61194c8b4acf8

 │ ├── f2

 │ │ └── f2aae6ff5d896839bfb8609cb1510bcf36efcb6950683c3bcfb760668b0eefbe

 │ ├── f3

 │ │ └── f3507e55e5eba49288cb3c8ff469e5a772b31fe8d0b5d2dae06faff4a4d34318

 │ ├── f9

 │ │ └── f9ecb48a3c125fb88cd60f765a8be522c55cb897a2670721060a98835b4a42b0

 │ └── fc

 │ └── fc2476ccae2a5186313f2d1dadb4a969d6d2d4c6b23fa98b6c7b0a1faad67685

 └── repositories

 ├── centos

 │ ├── _layers

 │ │ └── sha256

 │ │ ├── 256b176beaff7815db2a93ee2071621ae88f451bb1e198ca73010ed5bba79b65

 │ │ └── 5182e96772bf11f4b912658e265dfe0db8bd314475443b6434ea708784192892

 │ ├── _manifests

 │ │ ├── revisions

 │ │ │ └── sha256

 │ │ │ └──

fc2476ccae2a5186313f2d1dadb4a969d6d2d4c6b23fa98b6c7b0a1faad67685

29

 │ │ └── tags

 │ │ └── latest

 │ │ ├── current

 │ │ └── index

 │ │ └── sha256

 │ │ └──

fc2476ccae2a5186313f2d1dadb4a969d6d2d4c6b23fa98b6c7b0a1faad67685

 │ └── _uploads

 ├── debian

 │ ├── _layers

 │ │ └── sha256

 │ │ ├── 05d1a5232b461a4b35424129580054caa878cd56f100e34282510bd4b4082e4d

 │ │ └── f2aae6ff5d896839bfb8609cb1510bcf36efcb6950683c3bcfb760668b0eefbe

 │ ├── _manifests

 │ │ ├── revisions

 │ │ │ └── sha256

 │ │ │ └──

00c5748eb465a0139063c544de181177da504dfa4e545ac3c0ecd13b7363e70f

 │ │ └── tags

 │ │ └── latest

 │ │ ├── current

 │ │ └── index

 │ │ └── sha256

 │ │ └──

00c5748eb465a0139063c544de181177da504dfa4e545ac3c0ecd13b7363e70f

 │ └── _uploads

 ├── node

 │ ├── _layers

 │ │ └── sha256

 │ │ ├── 46dde23c37b3419122bb597461c1a48bdea1842aaae7dbe728dfa20a9aabe11b

 │ │ ├── 480d183b9ecf7a67b386cc7d1cf2919effbaa591dab9e8c7384bbf323a183686

 │ │ ├── 6ebaeb0745895220f609d4aa703e4563c39de239a2d00b85bece23a3ca3ac735

 │ │ ├── 8ac9c275c1a51f9f692adaeba47bb7f8471113cfb984723b21b83e4d0e48ee71

 │ │ ├── c0cfd94445383406b8a0935e92616ab11a87307e702d4dfaabf2b25542f49a40

 │ │ ├── c44709db38b42671c256080936a6e578adeb806a580750f56e9ccb2388292176

 │ │ ├── d660b1f15b9bfb8142f50b518156f2d364d9642fe05854538b060498e2f7928d

 │ │ ├── e7428f935583e84197ae834885e62b69922f1ce7e8672a3746295555b3853fc7

 │ │ └── edde81479afc60a26d95e7f657cceac56aa8a169fd4691b98da919f00e097d3d

 │ ├── _manifests

30

 │ │ ├── revisions

 │ │ │ └── sha256

 │ │ │ └── 81bc8dc9a8659a169f8187092eb2037bef64645ea74103b9a7d573ef4fc07496

 │ │ └── tags

 │ │ └── latest

 │ │ ├── current

 │ │ └── index

 │ │ └── sha256

 │ │ └──

81bc8dc9a8659a169f8187092eb2037bef64645ea74103b9a7d573ef4fc07496

 │ └── _uploads

 └── wordpress

 ├── _layers

 │ └── sha256

 │ ├── 15bc7736db11de5eddd0f13bb1c28ebe5612a4fcf398c7c1077f446abbdfb935

 │ ├── 23d9db872f7e06bc37f2a2c704c042fdd90c872a130ce7ef2272f0f9d03afdbc

 │ ├── 41e689eea0cdaab1280ed184f117171f0897a9353b3bd4cc321f0839d4027511

 │ ├── 4cb905a2737c60594ee948e4d6e7ae5375b571990c02fef97b1b5825d2275633

 │ ├── 543b133149a6507f2c2362aa42deda94d023bba156e6b8238c6cb3b71ec15dd3

 │ ├── 65632e89c5f4ef102bcd13b6e86baf954e0b902f688a46961d5ff0a36dddfebe

 │ ├── 69a25f7e493029f541fc3c7ac66fdffdd5f8c4b9b33346031523d053177bb365

 │ ├── 8178629708ff26a93a1f3b0cc54217949a6f9f8d30f72f9665d4043f4757b24f

 │ ├── 904e670dd387d970b3d51bc93c54ecaf3e2f1614f1dcc30085dbd001ff6128d5

 │ ├── a06f9e60b0808ffb7b1aa9dd498f894fe6d6663ad37ba09726638677c7970389

 │ ├── a3ed406e3c880fbafac0ae7ab1a889a46f9ef17e86e3efd898158a3241a0518b

 │ ├── ae70e16ef0357e55da00ce408666de68104a907cfdec4fac79eb281ee23ed4b5

 │ ├── b2c40cef4807e3464b2859ebb5e4ac179cfbc253a212ce725f3a5d27388f79fe

 │ ├── b9501b07bdf16f01651117cbfbe7deeed95c4c58331b4b164c8876e30328ec59

 │ ├── be8881be8156e4068e611fe956aba2b9593ebd953be14fb7feea6d0659aa3abe

 │ ├── c41139f0d4f55571bdfd90615889964aa74ed2878bd8811c906033642e3b9770

 │ ├── cd75fa32da8fd946b82c0447feac1f3c24330594492e3be74a516b18437d5306

 │ ├── e6006cdfa16b487a3a92269f59ecf33b936311fb9934fd4a5b7775b46933fdfe

 │ ├── f180ba12d718e7cecbebe48d0a552bb27932480b35bb0130acf61194c8b4acf8

 │ ├── f3507e55e5eba49288cb3c8ff469e5a772b31fe8d0b5d2dae06faff4a4d34318

 │ └── f9ecb48a3c125fb88cd60f765a8be522c55cb897a2670721060a98835b4a42b0

 ├── _manifests

 │ ├── revisions

 │ │ └── sha256

31

 │ │ └── 708410509e8f13fd6433384965b4a40f9f7a2863e516d3257e06ec0912247cb8

 │ └── tags

 │ └── latest

 │ ├── current

 │ └── index

 │ └── sha256

 │ └──

708410509e8f13fd6433384965b4a40f9f7a2863e516d3257e06ec0912247cb8

 └── _uploads

170 directories

[root@sn1-r720-g09-17 registry]#

Configure the build node for docker pull.

•	 As mentioned in the previous section, Docker is installed on all user workstations where the docker pull

operation is performed to pull the different Docker images from the Registry server registry.pure.lab.com.

–– Create a new directory with the Registry server name and port 5000.

[root@sn1-r720-g09-15 ~]# mkdir -p /etc/docker/certs.d/registry.pure.lab.com:5000

–– Copy the ca.crt from the private Docker Registry server – registry.pure.lab.com.

[root@sn1-r720-g09-15 ~]# scp -rp root@10.21.236.107:/certs/ca.crt /etc/docker/certs.d/registry.

pure.lab.com\:5000/.

–– Make sure the /etc/docker/daemon.json file has the same entries as mentioned in the previous section.

–– Restart Docker service

[root@sn1-r720-g09-15 ~]# systemctl restart docker

•	 Perform a docker pull operation from the secure Registry server – registry.pure.lab.com.

[root@sn1-r720-g09-23 ~]# docker pull registry.pure.lab.com:5000/debian

Using default tag: latest

latest: Pulling from debian

05d1a5232b46: Pull complete

Digest: sha256:00c5748eb465a0139063c544de181177da504dfa4e545ac3c0ecd13b7363e70f

Status: Downloaded newer image for registry.pure.lab.com:5000/debian:latest

32

[root@sn1-r720-g09-23 ~]# docker pull registry.pure.lab.com:5000/centos

Using default tag: latest

latest: Pulling from centos

256b176beaff: Pull complete

Digest: sha256:fc2476ccae2a5186313f2d1dadb4a969d6d2d4c6b23fa98b6c7b0a1faad67685

Status: Downloaded newer image for registry.pure.lab.com:5000/centos:latest

•	 Check the new images pulled from the secure Registry server – registry.pure.lab.com.

[root@sn1-r720-g09-23 ~]# docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

registry.pure.lab.com:5000/debian latest f2aae6ff5d89 2 weeks ago 101MB

registry.pure.lab.com:5000/centos latest 5182e96772bf 6 weeks ago 200MB

[root@sn1-r720-g09-23 ~]#

DOCKER SWARM CLUSTER SETUP

•	 Configure Docker swarm cluster with three nodes, as illustrated in Figure 8 above. Run the docker swarm

init command on the registry.pure.lab.com node.

[root@sn1-r720-g09-17 ~]# docker swarm init --advertise-addr 10.21.236.115

Swarm initialized: current node (4z5leyoscu1cdvh8rf24wuxnu) is now a manager.

To add a worker to this swarm, run the following command:

 docker swarm join --token SWMTKN-1-2b7ee6dvoveg0e9mtntc6n2fagmm27fg4vzmu7pcpvs1e5nz26-

e8rlkjj56v1xkueankxrgj9fu 10.21.236.115:2377

To add a manager to this swarm, run docker swarm join-token manager and follow the instructions.

•	 Add two more nodes to the cluster.

[root@sn1-r720-g09-19 ~]# docker swarm join --token SWMTKN-1-2b7ee6dvoveg0e9mtntc6n2fagmm27fg4vzmu7p

cpvs1e5nz26-e8rlkjj56v1xkueankxrgj9fu 10.21.236.115:2377

This node joined a swarm as a worker.

[root@sn1-r720-g09-17 ~]# docker node ls

ID HOSTNAME STATUS AVAILABILITY

MANAGER STATUS ENGINE VERSION

4z5leyoscu1cdvh8rf24wuxnu * sn1-r720-g09-17.puretec.purestorage.com Ready Active

Leader 18.06.1-ce

33

5d2sovxbiarna0sglm2eprm3b sn1-r720-g09-19.puretec.purestorage.com Ready Active

18.06.1-ce

tzjs9gxodvmd2mm7dud4fvdij sn1-r720-g09-21.puretec.purestorage.com Ready Active

18.06.1-ce

[root@sn1-r720-g09-17 ~]# docker network ls

NETWORK ID NAME DRIVER SCOPE

5ffa4fe40942 bridge bridge local

bd82739a9bde docker_gwbridge bridge local

7a78bdc85e9d host host local

28d49mld0q89 ingress overlay swarm

f85b7ef40497 none null local

CONCLUSION

Microservices and containers have transformed the way applications are developed in organizations that follow

modern DevOps principles. Private Docker Registries are used and accessed by different tools in data pipelines via a

simple URL in the CI/CD process. A private Docker Registry can be configured and consumed as part of a CI pipeline

where privacy, better development tools, integration, and cost efficiency for proprietary code and binaries are desired.

As the sole purpose of the Docker Registry is to host and collaborate in disconnected and private environments, NFS

on FlashBlade allows not only performance and capacity scaling with a reduced data footprint, but also enables faster

data recovery in the event of data loss and disasters. FlashBlade provides a data hub for different workloads within the

CI/CD process.

Optimizing source code repositories and parallel builds on FlashBlade is a discussion for a separate paper. Here,

we’ve shown that FlashBlade has the ability to store, deliver, and scale binary repositories like Docker images in a

cost-efficient manner with high data availability and faster data recovery capabilities.

https://www.purestorage.com/solutions/infrastructure/containers.html
https://blog.purestorage.com/jumpstarting-private-docker-registry-on-flashblade/

34

ABOUT THE AUTHOR

As a Technical Director for DevOps/EDA, Bikash Roy Choudhury

is responsible for designing and architecting solutions to address

customer business requirements in their transition to agile

development and application workflows across industry verticals

that include EDA/high tech, financial services, gaming, social media,

and web-based development organizations. Bikash has also worked

on validating solutions – with Red Hat OpenStack Platform (IaaS),

Apprenda (PaaS), Kubernetes/Docker, Jenkins, JFrog Artifactory,

Ansible, IBM Private Cloud (PaaS), and Perforce Helix – using RESTful

APIs and integrating them with data platforms that provide persistent

data storage in private, hybrid, and public clouds. With over 26 years

of experience, Bikash has a deep understanding of workloads and

workflows that have transitioned from spinning disks to flash over the

years, via NFS/blocks and S3 object store, and of automation and data

management strategies for end users and business owners.

SALES@PURESTORAGE.COM | 800-379-PURE | @PURESTORAGE

© 2018 Pure Storage, Inc. All rights reserved.

Pure Storage, the “P” Logo, and FlashBlade are trademarks or registered trademarks of Pure Storage, Inc. in the U.S. and other countries.
Docker is a registered trademark of Docker, Inc. in the U.S. and other countries.

The Pure Storage product described in this documentation is distributed under a license agreement and may be used only in accordance
with the terms of the agreement. The license agreement restricts its use, copying, distribution, decompilation, and reverse engineering.
No part of this documentation may be reproduced in any form by any means without prior written authorization from Pure Storage, Inc. and
its licensors, if any.

THE DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. PURE STORAGE SHALL NOT BE
LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

ps_wp34p_registry-as-a-service-with-flashblade_ltr_01

